
A Resource Cost Aware Cumulative

Helmut Simonis and Tarik Hadzic?

Cork Constraint Computation Centre
Department of Computer Science, University College Cork, Ireland

{h.simonis,t.hadzic}@4c.ucc.ie

Abstract. We motivate and introduce an extension of the well-known cumula-
tive constraint which deals with time and volume dependent cost of resources.
Our research is primarily interested in scheduling problems under time and vol-
ume variable electricity costs, but the constraint equally applies to manpower
scheduling when hourly rates differ over time and/or extra personnel incur higher
hourly rates. We present a number of possible lower bounds on the cost, including
a min-cost flow, different LP and MIP models, as well as greedy algorithms, and
provide a theoretical and experimental comparison of the different methods.

1 Introduction

The cumulative constraint [1, 2] has long been a key global constraint allowing the
effective modeling and resolution of complex scheduling problems with constraint pro-
gramming. However, it is not adequate to handle problems where resource costs change
with time and use, and thus must be considered as part of the scheduling. This problem
increasingly arises with electricity cost, where time variable tariffs become more and
more widespread. With the prices for electricity rising globally, the contribution of en-
ergy costs to total manufacturing cost is steadily increasing, thus making an effective
solution of this problem more and more important. Figure 1 gives an example of the
whole-sale price in the Irish electricity market for a sample day, in half hour intervals.
Note that the range of prices varies by more than a factor of three, and the largest dif-
ference between two consecutive half-hour time periods is more than 50 units. Hence,
large cost savings might be possible if the schedule of electricity-consuming activities
takes that cost into account.

The problem of time and volume dependent resource cost equally arises in man-
power scheduling, where hourly rates can depend on time, and extra personnel typi-
cally incurs higher costs. We suggest extending the standard CP scheduling framework
to variable resource cost scenarios by developing a cost-aware extension of the cu-
mulative constraint, CumulativeCost. The new constraint should support both the
standard feasibility reasoning as well as reasoning about the cost of the schedule. As a
first step in this direction we formally describe the semantics of CumulativeCost
and discuss a number of algorithms for producing high quality lower-bounds (used for
bounding or pruning during optimization) for this constraint. The proposed algorithms
are compared both theoretically and experimentally. Previous research on the cumula-
tive constraint has focused along three lines: 1) improvement of the reasoning methods
? This work was supported by Science Foundation Ireland (Grant Number 05/IN/I886).



Fig. 1. Irish Electricity Price (Source: http://allislandmarket.com/)
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used inside the constraint propagation, see [10, 7, 8] for some recent results. 2) apply-
ing the constraint to new, sometimes surprising problem types, for example expressing
producer/consumer constraints [9] or placement problems [4], and 3) extending the ba-
sic model to cover new features, like negative resource height, or non-rectangular task
shapes [3, 5]. The focus of this paper belongs to the last category.

2 The CumulativeCost Constraint

We start by formally defining our new constraint. It is an extension of the classical
cumulative constraint [1]

Cumulative([s1, s2, ...sn], [d1, d2, ...dn], [r1, r2, ...rn], l, p),

describing n tasks with start si, fixed duration di and resource use ri, with an overall
resource limit l and a scheduling period end p. Our new constraint is denoted as

CumulativeCost(Areas,Tasks, l, p,cost).

The Areas argument is a collection ofm areas {A1, . . . , Am}, which do not overlap and
partition the entire available resource area [0, p]×[0, l]. Each areaAj has a fixed position
xj , yj , fixed width wj and height hj , and fixed per-unit cost cj . Consider the running



example in Fig. 2 (left). It has 5 areas, each of width 1 and height 3. Our definition
allows that an area Aj could start above the bottom level (yj > 0). This reflects the fact
that the unit-cost does not only depend on the time of resource consumption but also
on its volume. In our electricity example, in some environments, a limited amount of
renewable energy may be available at low marginal cost, generated by wind-power or
reclaimed process heat. Depending on the tariff, the electricity price may also be linked
to the current consumption, enforcing higher values if an agreed limit is exceeded. We
choose the numbering of the areas so that they are ordered by non-decreasing cost
(i ≤ j ⇒ ci ≤ cj); in our example costs are 0, 1, 2, 3, 4. There could be more than one
area defined over the same time slot t (possibly spanning over other time-slots as well).
If that is the case, we require that the area ”above” has a higher cost. The electricity
consumed over a certain volume threshold might cost more. The Tasks argument is a
collection of n tasks. Each task Ti is described by its start si between its earliest start
si and latest start si, and fixed duration di and resource use ri. In our example, we
have three tasks with durations 1, 2, 1 and resource use 2, 2, 3. The initial start times are
s1 ∈ [2, 5], s2 ∈ [1, 5], s3 ∈ [0, 5]. For a given task allocation, variable aj states how
many resource units of area Aj are used. For the optimal solution in our example we
have a1 = 2, a2 = 3, a3 = 2, a4 = 0, a5 = 2. Finally, we can define our constraint:

Definition 1. Constraint CumulativeCost expresses the following relationships:

∀ 0 ≤ t < p : prt :=
∑

{i|si≤t<si+di}

ri ≤ l (1)

∀ 1 ≤ i ≤ n : 0 ≤ si ≤ si < si + di ≤ si + di ≤ p (2)

ov(t, prt, Aj) :=

{
max(0,min(yj + hj , prt)− yj) xj ≤ t < xj + wj

0 otherwise
(3)

∀ 1 ≤ j ≤ m : aj =
∑

0≤t<p

ov(t, prt, Aj) (4)

cost =
m∑
j=1

ajcj (5)

For each time point t we first define the resource profile prt (the amount of resource
consumed at time t). That profile must be below the overall resource limit l, as in the
standard cumulative. The term ov(t, prt, Aj) denotes the intersection of the profile at
time t with area Aj , and the sum of all such intersections is the total resource usage aj .
The cost is computed by weighting each intersection aj with the per-unit cost cj of the
area.

Note that our constraint is a strict generalization of the standard cumulative. Since
enforcing generalized arc consistency (GAC) for Cumulative is NP-hard [6], the
complexity of enforcing GAC over CumulativeCost is NP-hard as well. In the re-
mainder of the paper we study the ability of CumulativeCost to reason about the
cost through computation of lower bounds.



Fig. 2. An example with 3 tasks and 5 areas. Areas are drawn as rounded rectangles at the top, the
tasks to be placed below, each with a line indicating its earliest start and latest end. The optimal
placement of tasks has cost 15 (left). The Element model produces a lower bound 6 (right).
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3 Decomposition With Cumulative

We first present a number of models where we decompose the CumulativeCost into
a standard Cumulative and some other constraint(s) which allow the computation of
a lower bound for the cost variable. This cost component exchanges information with
the Cumulative constraint only through domain restrictions on the si variables.

3.1 Element Model

The first approach is to decompose the constraint into a Cumulative constraint and
a set of Element constraints. For a variable x ∈ {1, . . . , n} and a variable y ∈
{v1, . . . , vn}, the element constraint element(x, [v1, v2, ..., vn], y) denotes that y =
vx. For each task i and start time t we precompute a cost of having a task Ti starting
at time t in the cheapest area overlapping the time slot t (the bottom area). This value,
denoted as vit, is only a lower bound, and is incapable of expressing the cost if the task
starts at t but in a higher (more expensive) area. A lower bound can then be expressed
as

lb = min
n∑
i=1

ui

∀ 1 ≤ i ≤ n : element(si, [vi1, vi2, ..., vip], ui)

This lower bound can significantly underestimate the optimal cost since each task is
assumed to be placed at its “cheapest” start time, even if the overall available volume



would be exceeded. In our example, the vit values for each start time are displayed
above the time-lines for each task in Figure 2 (right). The lowest cost values for the
tasks are 0, 6 and 0, resp., leading to a total lower bound estimate of 6.

3.2 Flow Model

We can also describe our problem as a min-cost flow model, where the flow cost pro-
vides a lower bound to the cost variable of our constraint. We need to move the flow∑
i diri from tasks to areas. Figure 3 shows the flow graph used, where the tasks Ti are

linked to the areas Aj through flow variables fij which indicate how much volume of
task i is contained in area j. The sum of all flows aj through all areas must be equal to
the total task volume. Only the links from Aj to the terminal T have non-zero cost cj .
The lower bound estimate is a min-cost flow.

Fig. 3. Flow Graph
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The model can also be expressed by a set of equations and inequalities.

lb = min
m∑
j=1

ajcj (6)

∀ 1 ≤ j ≤ m : aj =
n∑
i=1

fij (7)

∀ 1 ≤ i ≤ n, ∀ 1 ≤ j ≤ m : fij ≤ fij ≤ fij (8)

∀ 1 ≤ j ≤ m : 0 ≤ aj ≤ aj ≤ aj ≤ wjhj (9)

∀ 1 ≤ i ≤ n :
m∑
j=1

fij = diri (10)

∀ 1 ≤ i ≤ n :
n∑
i=1

diri =
m∑
j=1

aj (11)

While the flow model avoids placing too much work in the cheapest areas, it does allow
splitting tasks over several, even non-contiguous areas to reduce overall cost, i.e. it
ignores resource use and non-preemptiveness of tasks (Fig. 4, right).



The quality of the bound lb can be improved by computing tight upper bounds fij .
Given a task i with domain d(si), we can compute the maximal overlap between the
task and the area j as:

fij = max
t∈d(si)

max(0, (min(xj + wj , t+ di)−max(xj , t))) ∗min(hj , ri) (12)

For the running example, the computed fij values are shown in Table 1 and the minimal
cost flow is shown in Fig. 4. Its cost is 3 ∗ 0+3 ∗ 1+2 ∗ 2+1 ∗ 3 = 10. Note how both
tasks 1 and 2 are split into multiple pieces.

Fig. 4. Example Flow Bound
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3.3 LP Models

The quality of the lower bound can be further improved by adding to the flow model
some linear constraints, which limit how much of some task can be placed into low-
cost areas. These models are no longer flows, but general LP models. We consider two
variations denoted as LP1 and LP2. We obtain LP1 by adding equations (13) to the LP
formulation of the flow model (Constraints 6-11).

∀ 1 ≤ j ≤ m :
n∑
i=1

j∑
k=1

fik =
j∑

k=1

ak ≤ Bj =
n∑
i=1

bij (13)

The bij values tell us how much of task i can be placed into the combination
of cheaper areas {A1, A2, ...Aj}. Note that this is a stronger estimate, since bij ≤∑j
k=1 fij . Therefore, the LP models dominate the flow model, but require a more ex-

pensive LP optimization at each step. Bj denotes the total amount of resources (from
all tasks) that is possible to place into the first j areas. We can compute the bij values
with a sweep along the time axis.



Table 1. fij , bij and Bj Values for Example

fij 1 2 3 4 5
1 2 0 0 2 2
2 2 0 2 2 2
3 3 3 3 3 3

bij 1 2 3 4 5
1 2 2 2 2 2
2 2 2 2 4 4
3 3 3 3 3 3
Bj 7 7 7 9 9

Table 1 shows the fij , bij and Bj values for the running example. The flow solution
in Fig. 4 does not satisfy equation (13) for j = 3, as a1 + a2 + a3 = 3 + 3 + 2 = 8 >
b13 + b23 + b33 = 2+2+3 = 7. Solving the LP model finds an improved bound of 11.

The LP2 model produces potentially even stronger bounds by replacing constraints (13)
with more detailed constraints on individual bij :

∀ 1 ≤ i ≤ n, ∀ 1 ≤ j ≤ m :
j∑

k=1

fik ≤ bij (14)

In our example though, this model produces the same bound as model LP1.

4 Coarse Models and Greedy Algorithms

If we want to avoid running an LP solver inside our constraint propagator, we can derive
other lower bounds based on greedy algorithms.

4.1 Model A

We can compute a lower bound through a coarser model (denoted as Model A) which
has m variables uj , denoting the total amount of work going into Aj .

lb = min
m∑
j=1

ujcj (15)

∀ 1 ≤ j ≤ m : uj ≤ wjhj (16)

∀ 1 ≤ j ≤ m : uj ≤
n∑
i=1

fij (17)

m∑
j=1

uj =
n∑
i=1

diri (18)



It can be shown that this bound can be achieved by Algorithm A, which can be
described by the recursive equations:

lb =
m∑
j=1

ujcj (19)

∀ 1 ≤ j ≤ m : uj = min(
n∑
i=1

diri −
j−1∑
k=1

uk,

n∑
i=1

fij , wjhj) (20)

The algorithm tries to fill the cheapest areas first as far as possible. For each area
we compute the minimum of the remaining unallocated task area, and the maximum
amount that can be placed into the area based on the fij bounds and the overall area
size.

4.2 Model B

We can form a stronger model (Model B) by extending Model A with the constraints:

∀ 1 ≤ j ≤ m :
j∑

k=1

uk ≤ Bj =
n∑
i=1

bij (21)

It can be shown that the lower-bound can be computed through Algorithm B, which
extends Algorithm A by also considering the Bj bounds (constraints (13)) and is recur-
sively defined as:

lb =
m∑
j=1

ujcj (22)

∀ 1 ≤ j ≤ m : uj = min(
n∑
i=1

diri −
j−1∑
k=1

uk,

n∑
i=1

fij , wjhj ,

n∑
i=1

bij −
j−1∑
k=1

uk) (23)

Both algorithms A and B only compute a bound on the cost, and do not produce
a complete assignment of tasks to areas. On the other hand, they only require a single
iteration over the areas, provided the fij and bij bounds are known. Figure 5 compares
the execution of algorithms A and B on the running example (top) and shows the re-
sulting area utilization (bottom). Algorithm A computes a bound of 9, which is weaker
than the Flow Model (lb = 10). Algorithm B produces 11, the same as models LP1
and LP2. Note that we can not easily determine which tasks are used to fill which area.

5 Direct Model

All previous models relied on a decomposition using a standard cumulative constraint to
enforce overall resource limits. We now extend the model of the cumulative constraint
given in [6] to handle the cost component directly (equations (24)-(33)).



Fig. 5. Execution of algorithms A and B on the running example.
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We introduce binary variables yit which state whether task i starts at time t. For
each task, exactly one of these variables will be one (constraint (30)). Equations (29)
connect the si and yit variables. Continuous variables prt describe the resource profile
at each time point t, all values must be below the resource limit l. The profile is used in
two ways: In (31), the profile is built by cumulating all active tasks at each time-point.
In (32), the profile overlaps all areas active at a time-point, where the contribution of
area j at time-point t is called zjt (a continuous variable ranging between zero and hj).
Adding all contributions of an area leads to the resource use aj for area j. This model
combines the start-time based model of the cumulative with a standard LP formulation
of the convex, piece-wise linear cost of the resource profile at each time point. Note that
this model relies on the objective function to fill up cheaper areas to capacity before
using more expensive ones. Enforcing the integrality in (26) leads to a mixed integer
programming model DMIP, relaxing the integrality constraint leads to the LP model
DLP. The MIP model solves the cumulative-cost constraint to optimality, thus providing
an exact bound for the constraint. We can ignore the actual solution if we want to use
the constraint in a larger constraint problem.

lb = min
m∑
j=1

ajcj (24)

∀ 0 ≤ t < p : prt ∈ [0, l] (25)
∀ 1 ≤ i ≤ n, 0 ≤ t < p : yit ∈ {0, 1} (26)

∀ 1 ≤ j ≤ m,∀ xj ≤ t < xj + wj : zjt ∈ [0, hj ] (27)
∀ 1 ≤ j ≤ m : 0 ≤ aj ≤ aj ≤ aj ≤ wjhj (28)

∀ 1 ≤ i ≤ n : si =
p−1∑
t=0

tyit (29)



∀ 1 ≤ i ≤ n :
p−1∑
t=0

yit = 1 (30)

∀ 0 ≤ t < p : prt =
∑

t′≤t<t′+di

yit′ri (31)

∀ 0 ≤ t < p : prt =
m∑
j=1

zjt (32)

∀ 1 ≤ j ≤ m : aj =
xj+wj−1∑
t=xj

zjt (33)

Example Figure 6 shows the solutions of DLP and DMIP on the running example.
The linear model on the left uses fractional assignments for task 2, splitting it into two
segments. This leads to a bound of 12, while the DMIP model computes a bound of 15.

Fig. 6. Direct Model Example
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6 Comparison

We now want to compare the relative strength of the different algorithms. We first define
the concept of strength in our context.

Definition 2. We call algorithm q stronger than algorithm p if its computed lower
bound lbq is always greater than or equal to lbp, and for some instances is strictly
greater than.

Theorem 1. The relative strength of the algorithms can be shown as a diagram, where
a line p → q indicates that algorithm q is stronger than algorithm p, and a dotted line
between two algorithms states that they are incomparable.

Element

Alg A

Flow

Alg B

LP 1 LP 2 DLP DMIP



Proof. We need two lemmas, which are presented without proof:

Lemma 1. Every solution of the Flow Model is a solution of Model A.

Lemma 2. Every solution of the model LP1 is a solution of Model B.

This suffices to show that the Flow Model is stronger than Model A, and Model LP1
is stronger than Model B. The other “stronger” relations are immediate. All “incompa-
rable” results follow from experimental outcomes. Figure 7 shows as example where
the Element Model and Algorithm A outperform the model DLP. Table 4 below shows
cases where the Element Model is stronger than Model A and Model LP2, and where
the Flow Model outperforms Algorithm B.

Fig. 7. Example: Element and Flow Models stronger than DLP

lb(Element)=2 > lb(DLP)=0
lb(Alg A)=2 > lb(DLP)=0

0 ← c1

4

1

1

1 ← c2

0 4

2

2

Why are so many of the models presented incomparable? They all provide different
relaxations of the basic constraints which make up the CumulativeCost constraint.
In Table 2 we compare our methods based on four main concepts, whether the algo-
rithms respect the capacity limits for each single area, or for (some of the) multiple
areas, whether the earliest start/latest end limits for the start times are respected, and
whether the tasks are placed as rectangles with the given width and height. Each method
respects a different subset of the constraints. Methods are comparable if for all concepts
one model is stronger than the other, but incomparable if they relax different concepts.

Without space for a detailed complexity analysis, we just list on the right side of
Table 2 the main worst-case results for each method. We differentiate the time required
to preprocess and generate the constraints, and the number of variables and constraints
for the LP and MIP models. Recall that n is the number of tasks, m the number of areas
and p the length of the scheduling period. Note that these numbers do not estimate the
time for computing the lower bounds but for setting-up the models.

7 Experiments

We implemented all algorithms discussed in the paper, referring to them as {DMIP,
Element, Algo A, Algo B, Flow, LP1, LP2, DLP}. For convenience we denote them also



Table 2. Model Satisfies Basic Constraints/Complexity

Method
Single
Area

Capacity

Multi
Area

Capacity

Earliest Start
Latest End

Task
Profile

Model
Setup

Variables Constraints

Element no no yes yes O(npm) - -
Flow yes no yes ≤ height O(nm) O(nm) O(n + m)

LP 1 yes Bj yes ≤ height O(nm2) O(nm) O(n + m)

LP 2 yes bij yes ≤ height O(nm2) O(nm) O(nm)
Alg A yes no no no O(nm) - -
Alg B yes Bj no no O(nm2) - -
DLP yes yes yes width O(np + mp) O(n + m + p)

DMIP yes yes yes yes O(np + mp) O(n + m + p)

as Algo0, . . . , Algo7. We evaluated their performance over a number of instances, de-
notedE. Each instance e ∈ E is defined by the areasA1, . . . , Am and tasks T1, . . . , Tn.
In all experiments we use a day-long time horizon divided into 48 half-hour areas and
two cost settings. In the first setting for each half-hour period we fix a price to given
values from a real-world price distribution (Fig. 1) over all the task specifications. We
denote this as a fixed cost distribution (cost = fixed). Alternatively, for each area we
choose a random cost from interval [0, 100], for each task specification. We refer to
this as a random cost distribution (cost = random). In both cases the costs are nor-
malized by subtracting the minimal cost cmin = minmj=1cj from each area cost. For a
given n, dmax, rmax, ∆ we generate tasks T1, . . . , Tn with randomly selected durations
di ∈ [1, dmax] and resource consumptions ri ∈ [1, rmax], i = 1, . . . , n. ∆ denotes the
maximal distance between the earliest and latest start time. For a given ∆ we randomly
select the interval si ∈ [si, si] so that 0 ≤ si−si ≤ ∆. One of the major parameters we
consider is utilization defined as a portion of the total available area that must be covered
by the tasks: util =

∑n
i=1 diri/(l · p). In the experiments we first decide the desired

level of utilization, util, and then select a corresponding capacity limit l = d
∑n

i=1 diri

util·p e.
Hence, each instance scenario is obtained by specifying (n, dmax, rmax, ∆, util, cost).

We used Choco v2.1.11 as the underlying constraint solver, and CPLEX v12.1 2 as a
MIP/LP solver. The experiments ran as a single thread on a Dual Quad Core Xeon CPU,
2.66GHz with 12MB of L2 cache per processor and 16GB of RAM overall, running
Linux 2.6.25 x64. All the reported times are in milliseconds.

General Comparison In the first set of experiments we compare the quality of the
bounds for all algorithms presented. Let vali denote a value (lower bound) returned by
Algoi. The DMIP algorithm, Algo0 solves the problem exactly, yielding the value val0
equal to the optimum. For other algorithms i we define its quality qi as vali/val0.

For a given instance we say that Algoi is optimal if qi = 100%. For all algorithms
except DMIP (i.e. i > 0), we say that they are the best if they have the maximal lower

1 http://choco-solver.net
2 http://www-01.ibm.com/software/integration/optimization/cplex/



bound over the non-exact algorithms, i.e. qi = maxj>0qj . Note that the algorithm
might be best but not optimal. For a given scenario (n, dmax, rmax, ∆, util, cost) we
generate 100 instances, and compute the following values: 1) number of times that
the algorithm was optimal or best 2) average and minimal quality qi, 3) average and
maximal execution time. We evaluate the algorithms over scenarios with n = 100
tasks, dmax = 8, rmax = 8, ∆ = 10, util ∈ {30%, 50%, 70%, 80%} and cost ∈
{fixed, random}. This leads in total to eight instance scenarios presented in Table
3. The first column indicates the scenario (utilization and cost distribution). The last
eight columns indicate the values described above for each algorithm. First note that
the bound estimates for algorithms B, LP1, LP2 are on average consistently higher than
95% over all scenarios, but that DLP provides exceptionally high bounds, on average
over 99.6% for each scenario. While algorithms A and Flow can provide weaker bounds
for lower utilization, the bounds improve for higher utilization. Algorithm Element on
the other hand performs better for lower utilization (since its bound ignores capacity l)
and deteriorates with higher utilization.

Table 3. Evaluation of algorithms for dmax = rmax = 8 and∆ = 10 with varying util and cost.

Scenario Key DMIP Element A B Flow LP1 LP2 DLP
util=30 Opt/Best 100 - 92 92 0 0 0 0 0 0 0 0 0 0 93 100

fixed Avg/Min Quality 100.0 100.0 99.998 99.876 57.268 33.055 99.77 99.337 97.429 94.665 99.77 99.337 99.77 99.337 99.999 99.994
Avg/Max Time 29 194 185 509 8 73 12 126 34 138 150 277 211 617 111 380

util=50 Opt/Best 100 - 2 2 0 0 0 0 0 0 0 0 0 0 7 100
fixed Avg/Min Quality 100.0 100.0 99.038 94.641 68.789 54.22 99.131 95.963 97.816 95.89 99.407 97.773 99.435 97.913 99.948 99.358

Avg/Max Time 89 2,108 176 243 6 12 7 94 33 130 139 274 194 275 96 181
util=70 Opt/Best 100 - 0 0 0 0 0 0 0 1 0 5 0 6 1 100

fixed Avg/Min Quality 100.0 100.0 93.541 81.603 84.572 69.953 96.495 87.884 99.1 96.994 99.24 97.838 99.346 98.071 99.764 98.992
Avg/Max Time 2,107 32,666 177 242 7 103 8 72 34 97 136 239 213 1,798 110 1,551

util=80 Opt/Best 100 - 0 0 0 0 0 1 0 4 0 20 0 21 0 100
fixed Avg/Min Quality 100.0 100.0 88.561 70.901 92.633 81.302 96.163 89.437 99.34 96.728 99.354 96.737 99.392 96.737 99.649 98.528

Avg/Max Time 13,017 246,762 206 450 10 67 15 96 38 124 156 235 220 426 125 299
util=30 Opt/Best 100 - 94 94 0 0 0 0 0 0 0 0 0 0 97 100
random Avg/Min Quality 100.0 100.0 99.996 99.872 58.094 41.953 96.965 93.237 73.759 54.641 96.965 93.237 96.966 93.254 99.999 99.977

Avg/Max Time 29 154 192 427 7 24 8 42 32 94 145 224 203 361 99 274
util=50 Opt/Best 100 - 0 0 2 8 2 8 2 8 2 8 2 8 5 100
random Avg/Min Quality 100.0 100.0 88.277 30.379 76.457 57.049 96.585 92.563 83.314 69.178 96.619 92.604 96.861 93.242 99.93 99.724

Avg/Max Time 2,452 62,168 202 814 10 99 13 131 43 177 165 380 238 903 108 327
util=70 Opt/Best 100 - 0 0 0 0 0 0 0 0 0 0 0 0 0 100
random Avg/Min Quality 100.0 100.0 91.045 72.06 89.784 75.822 95.242 90.496 92.953 84.277 95.953 92.24 96.947 94.012 99.697 99.374

Avg/Max Time 72,438 2,719,666 226 436 13 74 26 98 70 178 223 543 280 566 152 428
util=80 Opt/Best 100 - 0 0 0 0 0 0 0 0 0 0 0 0 0 100
random Avg/Min Quality 100.0 100.0 86.377 72.566 94.813 88.039 96.092 89.233 97.231 93.919 97.658 94.917 98.426 96.342 99.626 99.161

Avg/Max Time 684,660 8,121,775 320 2,148 16 100 31 180 63 370 223 1,586 363 23,91 286 7,242

We also performed experiments over unrestricted initial domains, i.e. where si ∈
[0, p − 1]. While most of the algorithms improved their bound estimation, Element
performed much worse for the fixed cost distribution, reaching quality as low as 12%
for high utilization. On the other hand, reducing ∆ to 5 significantly improved the
quality of Element, while slightly weakening the quality of other algorithms. In all the
cases, the worst-case quality of DLP was still higher than 98.6%.



Aggregate Pairwise Comparison In Table 4 we compare all algorithms over the entire
set of instances that were generated under varying scenarios involving 100 tasks. For
any two algorithms Algoi and Algoj let Eij = {e ∈ E | qei > qej} denote the set of
instances where Algoi outperforms Algoj . Let numij = |Eij | denote the number of
such instances, while avgij and maxij denote the average and maximal difference in
quality over Eij . In the (i, j)-th cell of Table 4 we show (numij , avgij ,maxij). In ap-
proximately 2000 instances DLP strictly outperforms all other non-exact algorithms in
more than 1700 cases and is never outperformed by another. Algorithm B outperforms
Flow (1107 cases) more often than Flow outperforming B (333 cases). Furthermore,
LP2 outperforms LP1 in about 700 cases. Interestingly, even though Element produces
on average weaker bounds, it is able to outperform all non-exact algorithms except DLP
on some instances.

Table 4. Comparison of algorithms over all instances generated for experiments with n = 100 tasks.

Element A B Flow LP1 LP2 DLP
DMIP 1802 26.39 88.62 1944 17.47 68.55 1944 3.99 30.71 1944 9.85 68.55 1944 3.49 30.71 1944 3.24 30.71 1387 0.18 1.47

EL - - - 1034 25.62 66.95 656 3.0 22.07 856 15.65 65.82 650 3.01 22.07 621 3.04 22.07
A 1052 38.1 88.61 - - - - - - - - - - - - - - -
B 1429 29.22 88.61 1439 18.22 66.65 - - - 1107 11.02 51.86 - - - - - -

FLW 1230 33.97 88.61 1184 12.51 64.35 333 2.39 10.49 - - - - - - - - -
LP1 1436 29.74 88.61 1441 18.86 66.65 726 1.33 10.51 1413 8.75 51.86 - - - - - -
LP2 1465 29.44 88.61 1441 19.19 66.65 846 1.71 10.64 1425 9.02 51.86 690 0.7 5.09 - - -
DLP 1802 26.24 88.61 1752 19.24 68.55 1751 4.28 30.71 1747 10.82 68.55 1727 3.78 30.71 1725 3.51 30.71 - - -

Varying Number of Tasks Finally, we evaluated the effect of increasing the number of
tasks. We considered scenarios n ∈ {50, 100, 200, 400} where dmax = 8, rmax = 8,
∆ = 10, util = 70 and cost = random.The results are reported in Table 5. We
can notice that all algorithms improve the quality of their bounds with an increase in
the number of tasks. While the time to compute the bounds grows for the non-exact
algorithms, interestingly this is not always the case for the DMIP model. The average
time to compute the optimal value peaks for n = 100 (72 seconds on average) and then
reduces to 24 and 9 seconds for n = 200 and n = 400 respectively.

8 Conclusions and Future Work

We have introduced the CumulativeCost constraint, a resource cost-aware exten-
sion of the standard cumulative constraint, and suggested a number of algorithms to
compute lower bounds on its cost. We compared the algorithms both theoretically and
experimentally and discovered that while most of the approaches are mutually incom-
parable, the DLP model clearly dominates all other algorithms for the experiments con-
sidered. Deriving lower bounds is a necessary first step towards the development of
the CumulativeCost constraint. We plan to evaluate the performance of the con-
straint in a number of real-life scheduling problems, which first requires development
of domain filtering algorithms and specialized variable/value ordering heuristics.



Table 5. Evaluation of algorithms for random cost distribution,∆ = 10 and util = 70.

Scenario Key DMIP Element A B Flow LP1 LP2 DLP
n=50 Opt/Best 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100

Avg/Min Quality 100.0 100.0 89.331 71.865 88.833 70.372 93.991 86.143 92.384 84.589 94.863 87.417 95.899 89.937 98.664 95.523
Avg/Max Time 1,334 31,426 102 314 8 83 6 36 23 78 93 254 132 298 75 233

n=100 Opt/Best 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100
Avg/Min Quality 100.0 100.0 91.045 72.06 89.784 75.822 95.242 90.496 92.953 84.277 95.953 92.24 96.947 94.012 99.697 99.374

Avg/Max Time 72,438 2,719,666 226 436 13 74 26 98 70 178 223 543 280 566 152 428
n=200 Opt/Best 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100

Avg/Min Quality 100.0 100.0 92.537 84.06 89.819 79.862 95.885 93.01 92.566 83.516 96.48 93.328 97.158 93.885 99.936 99.833
Avg/Max Time 24,491 233,349 395 700 19 148 22 113 83 208 341 533 468 638 226 456

n=400 Opt/Best 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100
Avg/Min Quality 100.0 100.0 93.239 86.419 90.417 84.205 96.3 92.721 92.939 86.658 96.716 93.275 97.23 95.013 99.985 99.961

Avg/Max Time 9,379 158,564 831 1,222 31 164 36 189 181 305 923 3,053 1,214 3,434 484 871
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